The multiscale physics of cilia and flagella
Gilpin, W., Bull, M. S., & Prakash, M. (2020). The multiscale physics of cilia and flagella. Nature Reviews Physics, 2(2), 74-88.
-
Cilia and flagella are fundamental units of motion in cellular biology. These beating, hair-like organelles share a common basic structure but maintain widely varying functions in systems ranging from the isolated flagella of swimming algae to the dense ciliary carpets that pump fluid in the brains of mammals. Experiments and models have begun to elucidate the inner workings of single cilia as complex nonlinear oscillators, and the variety of hydrodynamical phenomena that result from beating dynamics. These results have shed light on complex locomotion strategies observed in single-celled microorganisms and collective phenomena observed in microbial suspensions. In animal systems, dense ciliary arrays exhibit a variety of emergent phenomena, including active filtration, noise robustness and metachronal waves. Surprising phenomena have been observed in neuronally controlled ciliary arrays, demonstrating the need for new physical models of cilia that include central control, defect dynamics and topology. We review the emergent physics of cilia across scales, starting from the microscale dynamics of single cilia, and then proceeding to microorganisms and animal systems.