Microfluidic Bubble Logic
Authors: Manu Prakash, Neil Gershenfeld
Link: https://www.science.org/doi/10.1126/science.1136907
DOI: https://doi.org/10.1126/science.1136907
Abstract: We demonstrate universal computation in an all-fluidic two-phase microfluidic system. Nonlinearity is introduced into an otherwise linear, reversible, low–Reynolds number flow via bubble-to-bubble hydrodynamic interactions. A bubble traveling in a channel represents a bit, providing us with the capability to simultaneously transport materials and perform logical control operations. We demonstrate bubble logic AND/OR/NOT gates, a toggle flip-flop, a ripple counter, timing restoration, a ring oscillator, and an electro–bubble modulator. These show the nonlinearity, gain, bistability, synchronization, cascadability, feedback, and programmability required for scalable universal computation. With increasing complexity in large-scale microfluidic processors, bubble logic provides an on-chip process control mechanism integrating chemistry and computation.
Additional Information:
For the last 100 years, computation has been used as a mechanism for information processing. Even though physical laws directly enforce a necessary association of bits of information with physical entities (e.g. electrons in a microprocessor or pieces of chalk on a board), computation has not been developed as a paradigm for algorithmic assembly of physical materials. To make computation explicitly physical (literally), We invented a new logic family purely implemented in multi-phase Newtonian fluids that merge chemistry and computation, opening doors for algorithmic manipulation of entities at a mesoscale (1-100 microns). Welcome to the world of tiny little bubbles zipping in fluidic networks talking to each other (hydrodynamically speaking) implementing functions you desire.